当前位置:首页 > 游戏小说 > 超级机器人分身

第三百九十二章 可控核聚变

    可控核聚变反应堆的意义和重要性无需多说。〖微书网 www.103shu.com〗---

    在人类可预见的未来,化石能源必将有消耗殆尽的一天,根据地球上当前已探明的化石能源储量和消费量计算,石油大概还能用四十年,天然气八十年,煤炭二百年。

    但随着化石能源逐渐减少,未来这些能源的开采成本只会越来越高,因此,世界各国几乎都把获取廉价能源的希望全部寄托在了可控核聚变的身上。

    据测算,每升海水中含有0.03克氘,地球上仅在海水中就有45万亿吨氘。

    1升海水中所含的氘,经过核聚变可提供相当于300升汽油燃烧后释放出的能量。

    地球上蕴藏的核聚变能约为蕴藏的可进行核裂变元素所能释出的全部核裂变能的1000万倍,可以说是取之不竭的能源。

    更重要的是,可控核聚变不会产生污染环境的放射性物质,可在稀薄的气体中持续地稳定进行,堪称安全环保能源的典范。

    因此,从某种意义上说,可控核聚变对能源革命的推动力比金属电池还要大上许多,但出于成本、工艺以及策略考虑,陈新暂时不准备把可控核聚变技术拿出来,除非金属电池在未来世界各国推广受到阻碍,他才会祭出这对堪称超级大杀器的组合。

    至于现在,他首先要做的就是和钢镚好好打造一台属于战忽局的核聚变反应堆。

    核聚变反应堆的原理很简单,也很好理解。

    第一步。作为反应体的混合气必须被加热到等离子态——也就是温度足够高到使得电子能脱离原子核的束缚,原子核能自由运动,这时才可能使得原子核发生直接接触,这个时候,需要大约10万摄氏度的温度。

    第二步,为了克服库仑力,也就是同样带正电荷的原子核之间的斥力,原子核需要以极快的速度运行,得到这个速度,最简单的方法就是——继续加温。使得布朗运动达到一个疯狂的水平。要使原子核达到这种运行状态,需要上亿摄氏度的温度。

    然后就简单了,氚的原子核和氘的原子核以极大的速度,赤果果地发生碰撞。产生了新的氦核和新的中子。释放出巨大的能量。经过一段时间。反应体已经不需要外来能源的加热,核聚变的温度足够使得原子核继续发生聚变。这个过程只要氦原子核和中子被及时排除,新的氚和氘的混合气被输入到反应体。核聚变就能持续下去,产生的能量一小部分留在反应体内,维持链式反应,大部分可以输出,作为能源来使用。

    看起来很简单是吧,只有一个问题,你把这个高达上亿摄氏度的反应体放在哪里呢?迄今为止,人类还没有造出任何能经受1万摄氏度的化学结构,更不要说上亿摄氏度了。

    这就是为什么一槌子买卖的氢弹已经制造了50年后,人类还没能有效的从核聚变中获取能量的原因。

    好了,人类是很聪明的,不能用化学结构的方法解决问题,我们就用物理方法的试验一下。

    早在50年前,两种约束高温反应体的理论就产生了。

    一种是惯性约束,把几毫克的氘和氚的混合气体装入直径约几毫米的小球内,然后从外面均匀射入激光束或粒子束,球面内层因而向内挤压。球内气体受到挤压,压力升高,温度也急剧升高,当温度达到需要的点火温度时,球内气体发生爆炸,产生大量热能。这样的爆炸每秒钟发生三四次,并持续不断地进行下去,释放出的能量就可以达到百万千瓦级的水平。这一理论的奠基人之一就是我国著名科学家王淦昌。

    另一种就是磁力约束,由于原子核是带正电的,那么我的磁场只要足够强大,你就跑不出去,我建立一个环形的磁场,那么你就只能沿着磁力线的方向,沿着螺旋形运动,跑不出我的范围,而在环形磁场之外的一点距离,我可以建立一个大型的换热装置(此时反应体的能量只能以热辐射的方式传到换热体),然后再使用人类已经很熟悉的方法,把热能转换成电能就是了。

    原理上虽然简单,但是现有的激光束或粒子束所能达到的功率,离需要的还差几十倍、甚至几百倍,加上其他种种技术上的问题,使惯性约束核聚变可望而不可及。

    因此,眼下世界各国在受控核聚变研究上主要集中在磁力约束领域。

    为了实现磁力约束,需要一个能产生足够强的环形磁场的装置,这种装置就被称作“托克马克装置”——tokamak,也就是俄语中是由“环形”、“真空”、“磁”、“线圈”的字头组成的缩写。

    早在1954年,在原苏联库尔恰托夫原子能研究所就建成了世界上第一个托卡马克装置。

    进展貌似很顺利,其实不然,因为要想能够投入实际使用,必须使得输入装置的能量远远小于输出的能量才行,我们称作能量增益因子——q值。

    当时的托卡马克装置是个很不稳定的东西,搞了十几年,也没有得到能量输出,直到1970年,前苏联才在改进了很多次的托卡马克装置上第一次获得了实际的能量输出,不过要用当时最高级设备才能测出来,q值大约是10亿分之一。

    别小看这个十亿分之一,这使得全世界看到了希望,于是全世界都在这种激励下大干快上,纷纷建设起自己的大型托卡马克装置,欧洲建设了联合环-jet,苏联建设了t20(后来缩水成了t15,线圈小了。但是上了超导),日本的jt-60和美国的tftr(托卡马克聚变实验反应器的缩写)。

    这些托卡马克装置一次次把能量增益因子(q)值的纪录刷新。

    1991年欧洲的联合环实现了核聚变史上第一次氘-氚运行实验,使用6:1的氘氚混合燃料,受控核聚变反应持续了2秒钟,获得了0.17万千瓦输出功率,q值达0.12。

    1993年,美国在tftr上使用氘、氚1:1的燃料,两次实验释放的聚变能分别为0.3万千瓦和0.56万千瓦,q值达到了0.28。

    1997年9月,联合欧洲环创1.29万千瓦的世界纪录。q值达0.60。持续了2秒。仅过了39天,输出功率又提高到1.61万千瓦, q值达到0.65。

    三个月以后,日本的jt-60上成功进行了氘-氘反应实验。换算到氘-氚反应。q值可以达到1。后来。q值又超过了1.25。这是第一次q值大于1,尽管氘-氘反应是不能实用的,但是托卡马克理论上可以真正产生能量了。

    在这个大环境下。中国也不例外,在70年代就建设了数个实验托卡马克装置——环流一号(hl-1)和ct-6,后来又建设了ht-6,ht-6b,以及改建了hl1m,新建了环流2号。

    有种说法,说中国的托卡马克装置研究是从俄罗斯赠送设备开始的,这是不对的,ht6/hl1的建设都早于俄罗斯赠送的ht-7系统。

    ht-7以前,中国的几个设备都是普通的托卡马克装置,而俄罗斯赠送的ht-7则是中国第一个“超导托卡马克”装置。

    那什么是“超托卡马克装置”呢?

    回过头来说,托卡马克装置的核心就是磁场,要产生磁场就要用线圈,就要通电,有线圈就有导线,有导线就有电阻。托卡马克装置越接近实用就要越强的磁场,就要给导线通过越大的电流,这个时候,导线里的电阻就出现了,电阻使得线圈的效率降低,同时限制通过大的电流,不能产生足够的磁场,托卡马克貌似走到了尽头。

    幸好,超导技术的发展使得托卡马克峰回路转,只要把线圈做成超导体,理论上就可以解决大电流和损耗的问题,于是,使用超导线圈的托卡马克装置就诞生了,这就是超托卡马克。

    目前为止,世界上有4个国家有各自的大型超托卡马克装置,法国的tore-supra,俄罗斯的t-15,日本的jt-60u,和中国的east。

    &nb只能叫“准超托卡马克”,它们的水平线圈是超导的,垂直线圈则是常规的,因此还是会受到电阻的困扰。此外他们三个的线圈截面都是圆形的,而为了增加反应体的容积,east则第一次尝试做成了非圆型截面。此外,在建的还有德国的螺旋石-7,规模比east大,但是技术水平差不多。

    由于可控核聚变项目研究所需的巨额成本,任何一个单一国家都很难**承担,因此,从1985年开始,由苏联、美国、日本和欧共体共同提出,联合出资建立世界上第一个试验用的聚变反应堆(iter)。(注意:iter已经不是托卡马克装置了,而是试验反应堆,这是一大进步)

    最初方案是2010年建成一个实验堆,实现1500兆瓦功率输出,造价100亿美元。

    没想到因为各国想法不同,又恰逢苏联解体,加上技术手段的限制,一直到了2000年也没有结果,其间美国中途退出,iter出现胎死腹中的危险。

    直到2003年,能源危机加剧,各国又重视起来,首先是中国宣布加入了iter计划,欧洲、日本和俄罗斯自然很高兴,随后美国宣布重返计划。紧接着,韩国和印度也宣布加入。

    2005年iter正式立项,地点在法国的卡达拉申,基本设计不变,力争2015年前全面完成,造价120亿美元,欧盟出40%,法、中、日、美各出10%,剩下的想让别人平摊,但韩国印度不干,力争让俄国也出10%,自己出5%,最终美、日、俄、中、韩、印各出约9%。

    iter拉丁语含义为“道路”,可见大家对这个东西抱有多大的希望。很有可能,她就是人类解决能源问题的“道路”。

    如果iter能成功,下一步就是利用iter的技术,设计和建造示范商用堆,到那时,离真正的商业核聚变发电就不远了。但是iter建设中,还有大量的技术问题需要解决,需要有一个原型可以参考,在此基础上,各国的先进超导托卡马克装置就成了设计iter的蓝本。

    当然了,iter的研究远非一个托卡马克装置,它还有很多难题需要攻克。

    这里就要说一下q值(输出功率与输入功率之比)问题,目前世界各国普遍能将q值做到1.5以上,但还有两个难题,目前各国都还没有解决。

    第一就是持续不间断地提供高温所需的能量。q值1.5意味着:产出150吨tnt当量的能量,就要投入100吨tnt当量的能量,而且还是持续的!就像大片里的那样:一台科幻设备一开动,整个城市的灯都灭了。

    第二,即使能够持续供电,但你投入的是1个电,而它产生的却是1.5的热及辐射等。而把它转化成电的话,如果转化率小于66%,还是亏了。目前全球在这一技术上还没有突破。

    因此,对人们而言,可控核聚变原理和方案都具备,最困难的在于工程技术方面,而这个恰恰是钢镚最为擅长的。

    这也是陈新为什么有信心制造出世界上首台可以商业化运营的剧变反应堆的原因之一。

    比如,为了获得强磁场,世界各国普遍采用超导线圈来约束高温等离子体,但是人类现有超导材料只能维持在零下一百多度呈现出超导性,他们必须将磁体系统浸泡在液氦之中,这样一来,不但增加了聚变堆的建设成本,而且聚变堆的小型化也受到了极大的限制。

    此外,像高频电流点火,大功率激光点火,这些都需要新一代的材料工艺支持。

    但对钢镚而言就无所谓了,它现在可以将铊、钡、钙、铜、氧等元素结合起来,制造出一种临界温度达到340k的常温超导体,即在地球上百分之九十九以上的地区,这种材料都能在裸露状态下实现超导性。

    至于核聚变反应点火时所需的高频电流、大功率激光器,那更是小菜一碟了。(未完待续。。)u
Back to Top